Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: a randomised pilot study.

نویسندگان

  • Bethel C A Osuagwu
  • Leslie Wallace
  • Mathew Fraser
  • Aleksandra Vuckovic
چکیده

OBJECTIVE To compare neurological and functional outcomes between two groups of hospitalised patients with subacute tetraplegia. APPROACH Seven patients received 20 sessions of brain computer interface (BCI) controlled functional electrical stimulation (FES) while five patients received the same number of sessions of passive FES for both hands. The neurological assessment measures were event related desynchronization (ERD) during movement attempt, Somatosensory evoked potential (SSEP) of the ulnar and median nerve; assessment of hand function involved the range of motion (ROM) of wrist and manual muscle test. MAIN RESULTS Patients in both groups initially had intense ERD during movement attempt that was not restricted to the sensory-motor cortex. Following the treatment, ERD cortical activity restored towards the activity in able-bodied people in BCI-FES group only, remaining wide-spread in FES group. Likewise, SSEP returned in 3 patients in BCI-FES group, having no changes in FES group. The ROM of the wrist improved in both groups. Muscle strength significantly improved for both hands in BCI-FES group. For FES group, a significant improvement was noticed for right hand flexor muscles only. SIGNIFICANCE Combined BCI-FES therapy results in better neurological recovery and better improvement of muscle strength than FES alone. For spinal cord injured patients, BCI-FES should be considered as a therapeutic tool rather than solely a long-term assistive device for the restoration of a lost function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of combining low frequency repetitive trans-cranial magnetic stimulation and conventional rehabilitation in improving functional behavior of hemiplegic patients

Purpose: Some new methods of treatment focus on using magnetic stimulation as a means of induction currents in the brain to produce therapeutic effects. The aim of this clinical trial was to determine the effects of repetitive transcranial magnetic stimulation (rTMS) plus routine rehabilitation on hand grip and wrist motor function in hemiplegic patients.Materials and Methods: Twelve hemiplegic...

متن کامل

Effects of Cortical and Peripheral Electrical Stimulation on Brain Activity in Individuals with Chronic Low Back Pain

Purpose: Neuroscience studies suggest that Chronic Low Back Pain (CLBP) is associated with central sensitization, and maladaptive reorganization of the brain; this introduced a new target for LBP treatment. Studies revealed that cortical and peripheral electrical stimulation can be beneficial in regulating brain neuronal activity. However, there is a scarcity of evidence to support the effects ...

متن کامل

EEG-Based Asynchronous BCI Controls Functional Electrical Stimulation in a Tetraplegic Patient

The present study reports on the use of an EEG-based asynchronous (uncued, user-driven) brain-computer interface (BCI) for the control of functional electrical stimulation (FES). By the application of FES, noninvasive restoration of hand grasp function in a tetraplegic patient was achieved. The patient was able to induce bursts of beta oscillations by imagination of foot movement. These beta os...

متن کامل

A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface

It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is...

متن کامل

A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System

Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neural engineering

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2016